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NONLOCAL EFFECTS ON THE CONVECTIVE PROPERTIES OF THE
ELECTROSTATIC CURRENT DRIVEN ION CYCLOTRON INSTABILITY

I. INTRODUCTION

N

4 The current driven ion cyclotron 1.nst:abi.1:l.t:y1 (CDICI) has been of
considerable interest to both space and laboratory plasma physicists for

more than two decades. Recently, we have demonstrated the importance of

[ M ¥ bt B RV N

nonlocal effects due to magnetic shear??3 (produced by the field aligned
current) and the finite extent of the curreat channell"s. Our past work

dealing with these nonlocal aspects of the electrostatic CDICI was

A D L,
et e’a Al

esgsentially based on a normal mode approach. The local treatment of the
CDICI,I’E”7 which assumes an infinite extent of the width of the current
channel, predicts a finite group velocity of the CDICI in both the parallel
and perpendicular directions relative to the external magnetic field. For
a temporally growing mode, the presence or absence of a group velocity in a

finite sized region of space (as opposed to a point) makes an instability

sCutMONDR N " L - Ccaf NEALACAEALY

convective or absolute;8 these are two vastly different physical

‘I

scenarios. This fact has been elucidated by Ashour—-Abdulla and Kenne1,7 in
general, and more specifically for the CDICI by Ashour-Abdulla and

'I‘horne.9

In our earlier work?™% we noted a significant difference between
the local and the nonlocal results as far as growth rates of normal modes

are concerned. For instabilities like the CDICI which are convective, a

L3/ Y i

normal mode analysis without regard to the convective growth cannot fully
determine the stability of a bounded system, and hence is somewhat limited

in its application. Thus, the main objective of this paper is to report

[NL LN Y

the nonlocal effects due to magnetic shear and the finite current channel

width on the convective aspects of the electrostatic CDICI.
Manuscript approved April 23, 1984,
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II. THEORY

y "u Ty e e

In our treatment we will follow the analytical approach as given in
Bakshi et al.4 We introduce a finite current channel width in the x
direction. We take the electron distribution function to be Maxwellian

with a drift velocity parallel to the magnetic field which is x dependent:

o Y
Vd(x) -V, g[xg/Lc) (1) :
_
rd
]
2 : 3
where g(£) = exp(- §") and xg =%+ vy/ne. Assuming that vy/ne 0(p,) ’
<L Lc, where I.c 1s the characteristic 1length scale associated with the .
current channel, we approximate (1) by o
A
¥
-
e] o
Vd(x) - Vdg[x/Lc). (2) y
; 7
LN
N
N
Using (2) and following the methods illustrated in Ref. 4 we arrive at the =
.
nonlocal, differential equation for the CDICI: :‘
N
P 2 ~
{22 235 + qlu, v, )} #6) =0, (3)
L 2 d
[ 13

-
where Q 18 defined by, E
w
2 4
Q=P R @ R
»!
¢
-
:;-:
2 o
o
@
~
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Q = 1+ (k) + 4 ﬁ T (b)z,z( (1 - np)g, )

vd(E) V(8 .
+1 (Ce - _v‘e—_Jz(ce - v, ) ' (%)
oL
A=5=T, i reev) z((1 - apdz, ), (6)

2.2 -
where b = kypilz, I =ar /3, t=T,/T,p= ni/z, Z, w/ |k |vy,
£ = x/L, &, = 0/|kylvg, ky(x) =k, + k(L /L) los(e)ds. u =l (x)/k
and I‘s is the characteristic length associated with the shear in the
magnetic field.

The dispersion equation is given by:“

Q’(mn EIJ - 0’ (78)

Q(w, EIJ = (22 + ljtpi/Lc)[__lz_Qn(w’ EI)JI/Z, (7b)

where Q” and Q" are the first and second derivatives of Q with respect
to § evaluated at El, which is defined by 7a. We solve equations 7a and 7
numerically for the complex eigenfrequencies w, given the perpendicular
wav§ vector ky, the parallel wave vector at the origin kz, and other

parameters characterizing the system. For evaluating the group

L)
=
-

velocities vgz and vgy we take the derivatives of the real part of the

, » A

eigenfrequency wr’ with respect to kz and ls,, respectively, 1i.e., ng

A«'t,/Akz and ng = Amr/Aky. In the x direction the wave energy is confined

to the vicinity of &, = xl/Lc.
Figure la shows the parallel group velocity normalized by the ion -

thermal velocity v, versus the ratio of the current channel size Lc and the

3
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magnetic shear 1length Ls for three different values of Lg. Here b =

0.6, T= 0,5, u= 1837 and V:/ve = 0,28. In order to evaluate the value

of (kykijz we have used the parameters of Ashour-Abdulla and Thorneg, i.e.,

a,~10 <3, B ~0.06 G and T, ~2 eV, For the first
2

harmonic (k) )> ~0.01 and that term 1in equation (5) contributes

-

negligibly. The most interesting result of figure la is that in the limit

Lc > o ng + 0. One finds that as Lc is increased beyond

Lg» ng approaches zero as (Ls/Lc)z. Further, when L, is made smaller than

10~2 Ls the value of sz attains its local value (i.e., the value predicted
by local theoriesl’G) and stabilizes at that value. However, when Lc is
further reduced such that Lc < Per ng once again decreases,

Figure 1b 18 a plot of ng against Lc/Ls for the parameters of Figure
la., Here too we find a reduction in ng in the shear dominated regime

(1.e., L. 2 Ls) much in the same fashion as the temporal growth rate.?

However, the difference between the local and the nonlocal values of ng is

not as striking as that of ng. As noted by Ashour-Abdulla and Thorne,9
vSY for the CDICI near the dominant normal mode (which occurs for
b ~ 0(1)) is extremely small; and combined with our results that ng + 0
in the nonlocal regime the CDICI becomes, effectively, an absolute
instability. PFor Lc < pi, ng becomes negative., Figures 2a and 2b are
plots similar to 1la and 1b for the second harmonic. Here we
use T = 1, Vglve =0.55 and b = 2.4, The value of b for all the
calculations corresponds to the maximum temporal growth rate. We see
treads similar to figure la and 1b for the higher harmonic also.

In Figure 3 we plot the convective growth rate kiz = Y/ng normalized

by the mean ion Larmor radius versus Lc/Ls‘ We see two distinct regions

Y NI NN N T R L AT e A AT C L e S T SRS NN
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, joined smoothly. For very small L(:/I..8 (1.e., Lc/Ls < 107), kizpi <0

‘ which indicates spatially damped waves. When Lc/Ls is increased the curves
‘. attain a plateau which corresponds to the local theory. Here we find a
:: finite kizp N and, hence, a finite region in which the wave amplitude can be
: amplified by one e-fold. For I‘c 2 Ls, kizp 4 8rows without bound, implying
- that the wave amplitude can e-fold in an insignificantly small region
g . (Recall that the system is assumed to be infinite and uniform in the y
" direction, hence convection in this direction 1s ignorable). Thus the
i character of CDICI is changed from convective to absolute.
' We have so far considered only one species of ions characterized by a
?i temperature Ti‘ In order to make the system more realistic, especially for
\ space applications, we added a second ion species characterized by a hotter
: temperature but still with a Maxwellian distribution. The general features
E of the group velocity behavior is still the same as in a single ion
X specles. A more detailed parametric study of the nonlocal conv;active
j‘_ aspects of CDICI with a loss cone distribution for the hotter ion species,
X along with the magnetospheric application will be presented elsewhere.
R
8 '
3 III. DISCUSSION
» Thus, in contrast to local theory, nonlocal theory gives zero group
!' . velocity for the CDICI along the average external magnetic field direction
S in the limit L. > I's' Clearly the ratio I‘c/Ls is the important parameter
; ) and 1its magnitude must be well established before making definitive
conclusions regarding the electrostatic CDICI. Depending on the value of
5 LC/LB, the CDICI can be classified into three main regimes:

e
il A

2
e
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(1) L > 0.1 Ls This regime 1s purely nonlocal with a temporal

i c - )
‘f growth rate much reduced from its local value. Also the
\ o instability is absolute or only very weakly convective in the z
‘_’3 direction which 41is the direction of the average external
_.S magnetic field and the current flow. There is no energy flow
\ in the x direction, and energy flow in the y direction is | )
3 : ignorable if o, |
2% 3
: (11) Lc < 0.01 I.s In this regime nonlocal theory reproduces the

results of local theory, and the instability becomes convective
"" in the z direction with a convective, as well as a temporal "
: .' growth rate, equal to the ones given by the local theory.
e, There is a smooth transition between regimes (i) and (ii) as is
:g:_ evident in all the figures.
"; (111) Lc ~ ey <L Ls The finite channel width becomes important. r
There 1is once again a reduction in the temporal growtt; rate

(filamental quenchinga) but the instability remains convective,

1.e., ng remains non-zero. However, when Lc is further

L reduced so that L < p, both V_ and V__ become reduced and
W [ i g2 gy

¥

:: eventually become negative.

5

\ o

S Physically the reason for vanishing parallel group velocity can be
described as follows. Figure 4 shows the angle space where the imaginary
o

A.';-.

J:j part of the local dispersion relation Dg < 0, and the growth rate is
'{‘l

-!'" positive for the CDICI. The extent of this unstable angular space Au for
S

-3 the CDICI in our parameter range is about O.l. In the nonlocal theory a
"y

; wave packet is formed whose size 1is governed by the smaller of the two
1:1

G scale lengths L, and 0.1 L,. When L, < 0.1 L, the drift velocity Vq(x)

varies sufficiently fast as a function of x, or as a function of the angle

6
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‘<
N u within the space Au, so as to form an effective QI curve which has the
0
f»‘- form of a steep well. The position of the bottom of this well is at u

o

= kz/ky; thus different choices of kz center the well in different parts of

the region Au and the corresponding wave packets (of size '/p—;.l‘_c) sample
different regions of Au which lead to different growth rates y as well as
\: different real frequencies w_. On the other hand, when Lc > Ls’ the
" variation of Vd(x) in the domain Au is rather weak and the effective Q
1. curve is governed by the variation of u rather than that of Vd in Eq.
:- (3). Now, if we choose different kz, an appropriate translation in x
" (i.e., moving away from the center of the slab) is sufficient to provide
‘:.:: almost the same invariant QI curve as a function of u. The resulting wave
.-. packet (of size @) forms at the same position in u space (even though
. we choose different kz) and has the same gfowth rate Y and real
:: frequency mr, independent of kz' This makes the group velocity amr/akz

.:', vanish in the limit L.~ -

A IV. CONCLUSION

We have shown in this paper that the nonlocal effects due to the
E: magnetic shear (produced by a field aligned current) and a finite channel
:'. current width can drastically alter the character of the electrostatic
:{" CDICI by making the instability effectively absolute in the z direction.
)

The important parameter turns out to be the ratio of the two scale lengths

A

i

involved in the problem L c and Ls' Depending on the value of Lc/Ls one can

::, classify the CDICI in three regimes as described earlier, and a careful
.‘l

] assessment of the value of Lc/Ls for a given physical situation becomes
~

-.:

S,

* 7

,“

T

)
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esgsential to draw any definitive conclusion regarding the growth and
convective characteristics of the electrostatic CDICI. We would also like
to note that the nonlocal effects due to magnetic shear can be expected to
produce corresponding phenomena, including the vanishing of the parallel

group velocity, in various other current driven instabilities as well.
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Figure 1
A plot of the group velocity against Lc/Ls for the first harmonic.

Here b = 0.6, T = 0.5, u = 1837 and Vf;/ve = 0,28, (a) The group
velocity 1in the z direction ng/vi against Lc/Ls; (b) the group

velocity in the y direction ng/vi against I‘c“’s‘
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